2019-2020 Academic Year ## **Physics Department** ## **Course description** | Course code | Phys 102 | |---------------------------|---| | Credit | 3 credits (Lecture2 +Lab1) | | Course Title | College Physics | | Course Coordinator | Dr Thandar Htoon | | Prerequisite | None | | Course Description | Electricity and Magnetism, Light and Optics, Modern Physics | | Objectives | To provide the student with a clear and logical presentation of the basic concepts and principles of physics To strengthen an understanding of the concepts and principles through a broad range of interesting applications | | | in today's information technological area | | Student Learning Outcomes | Be able to identify and describe the basic laws of classical mechanics, thermal physics and wave motion | | | Be able to apply the basic laws of physics to the solution of conceptual and quantitative problems | | Topics Covered | The chapters are covered by Electromagnetism, Optical Physics and Quantum Mechanics. | | Text book and Reference | College Physics "by Raymond A.Serway and Chris Vuille", 11th Edition (Global Edition)) ISBN-13: 978-1337620338 Ref: Physics for Scientists and Engineers 9th edition (Raymond A. Serway and John W. Jewett, Jr.), University Physics 14th edition (Hugh.D.Young and Roger A.Freedom), Fundamentals of Physics 10th edition (Jearl Walker, David Halliday, Robert Resnick) | | Lesson Plan | Electricity and Magnetism: Topic (15) Electric Forces and Electric Fields Topic (17) Current and Resistance Topic (18) Direct-Current Circuits Topic (19) Magnetism Topic (21) Alternating-Current Circuits and | | Assessment Plan | 1. Examination (50 %) 2. Attendance (10%) 3. Assignment/Test at the end of each chapter (20 %) 4. Practical /Practical test (20%) |